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ABSTRACT

Code generation aims to automatically generate the source code
based on given natural language (NL) descriptions, which is of great
significance for automated software development. Some code gen-
eration models follow a language model-based paradigm (LMBP)
to generate source code tokens sequentially. Some others focus on
deriving the grammatical structure by generating the program’s
abstract syntax tree (AST), i.e., using the grammatical structure-
based paradigm (GSBP). Existing studies are trying to generate
code through one of the above two models. However, human de-
velopers often consider both paradigms: building the grammatical
structure of the code and writing source code sentences according
to the language model. Therefore, we argue that code generation
should consider both GSBP and LMBP. In this paper, we use mutual
learning to combine two classes of models to make the two differ-
ent paradigms train together. To implement the mutual learning
framework, we design alignment methods between code and AST.
Under this framework, models can be enhanced through shared
encoders and knowledge interaction in aligned training steps. We
experiment on three Python-based code generation datasets. Ex-
perimental results and ablation analysis confirm the effectiveness
of our approach. Our results demonstrate that considering both
GSBP and LMBP is helpful in improving the performance of code
generation.
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Figure 1: An NL description and the corresponding Python

code snippet of the bubble sort algorithm. The italic code

in red forms the grammatical structure of the algorithm,

and the code in blue with underlined forms coherent code

snippets.

1 INTRODUCTION

Code generation aims to automatically generate the source code
according to natural language (NL) descriptions. Because of its
potential in automated software development, code generation
has become one of the research hotspots in software engineering.
With the advantages of feature learning and generation capability,
deep learning technology has been widely used in code generation
[7, 16, 32, 33]. Some code generation models follow a language
model-based paradigm (LMBP) to generate source code tokens se-
quentially. An example is the sequence-to-sequence (Seq2Seq) [23]
model, consisting of an encoder and a decoder. The encoder takes
an NL description as input, and the decoder outputs the corre-
sponding code token sequence according to LMBP. Some studies
[3, 6, 12, 16, 17, 20, 29] fall into this category, as do pre-trained
models [2, 8, 28]. These Seq2Seq models inherit the advantages of
the language model, capturing the information of the NL speci-
fication well and generating coherent code snippets. Some other
models focus on deriving the grammatical structure by generating
the abstract syntax tree (AST) of programs [5, 19, 22, 32, 33]. These
models are based on the sequence-to-tree (Seq2Tree) model, using
an encoder to process NL descriptions and a tree decoder to output
a sequence of tree-construction actions, which correspond to the
generation of an AST and can be further converted into the code.
This generation is according to the grammatical structure-based
paradigm (GSBP). These Seq2Tree models can generate well-formed
code through AST structures and syntactic constraints.

We argue that code generation should consider both LMBP and
GSBP, used by the Seq2Seq and Seq2Tree models. The reason is that
humans consider both paradigms when programming. For exam-
ple, consider writing an algorithm according to the NL description
in Figure 1. The programmer needs to conceive the grammatical
structure (red italic marks in Python code in Figure 1) and writes
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source code sentences in left-to-right order according to the lan-
guage model (blue underlined marks in Python code in Figure 1).
Inspired by human programming, code generation models should
also combine these two distinct paradigms while leveraging the
strengths of each. Intuitively, the output of the Seq2Tree models is
an AST, which explicitly expresses the grammatical structure of the
corresponding code. Therefore, the generation of Seq2Tree models
is according to GSBP and has advantages in capturing the grammat-
ical structure information. In contrast, the Seq2Seq models directly
generate the token sequence of the source code according to LMBP
and have the advantage of generating coherent fragments. We want
to combine the two generation models, Seq2Seq and Seq2Tree, and
take advantage of the different paradigms of the two models to
generate more structural and natural [10] code snippets.

In this paper, we use the mutual learning method to realize
the knowledge interaction between Seq2Tree and Seq2Seq models.
Mutual learning [35] is a learning approach that enables different
models to learn collaboratively by mimicking others’ inferred prob-
ability distributions, and has been used in many fields. Our mutual
learning framework integrates different generation paradigms and
targets, called MutualTS (mutual learning framework combining
the Seq2Tree and Seq2Seq models). Specifically, MutualTS con-
sists of an encoder for NL input and two decoders, the Seq2Tree
end and the Seq2Seq end. The Seq2Tree end is similar to the de-
coder of the Seq2Tree model and outputs AST results. The Seq2Seq
end is similar to the decoder of the Seq2Seq model and outputs
source code results. In the specific training step, we calculate the
Kullback-Leibler (KL) divergence between the output probability
distributions of the two decoders to achieve mutual learning. This
allows each decoder to learn not only from the training data but
also from the knowledge of another decoder to further enhance
itself. In addition, the shared encoder can also help to integrate the
knowledge of the two decoders. The critical challenge in theMutu-
alTS framework is aligning the two different output formats (AST
& code) to enable mutual learning. Therefore, we first align the
generation steps of two decoders, i.e., establish a correspondence
between code tokens and AST nodes. We then align the probabil-
ity space on the Seq2Tree end and the Seq2Seq end, i.e., create a
mapping between the tree-construction action table and the code
token vocabulary. Thus, the Seq2Seq and Seq2Tree models in the
MutualTS framework can realize knowledge interaction.

After the MutualTS framework is trained, one of the two de-
coders, Seq2Tree or Seq2Seq, can be used with the encoder to form
an independent encoder-decoder model for a generation. Although
this encoder-decoder model is still generated using a single par-
adigm, through mutual learning with another decoder based on
another paradigm, both Seq2Tree and Seq2Seq end can gain knowl-
edge about another generation paradigm and enhance themselves.
Experimental results on three datasets prove this view and verify
the performance of MutualTS. We further verify the effectiveness
of each component in the MutualTS framework by ablation ex-
periments. Through the analysis of samples, we find that different
generation paradigms have advantages in different situations and
can be mutually enhanced through mutual learning.

In summary, the contributions of this paper are:

• We argue that code generation should consider both the
grammatical structure-based paradigm and the language
model-based paradigm, which are used by the Seq2Tree mod-
els and the Seq2Seq models, respectively.

• We propose MutualTS, a mutual learning framework for
code generation. Through mutual learning between two dif-
ferent decoders, our framework can refer to both paradigms
simultaneously to improve the generation.

• Experimental results on three datasets show the improve-
ments provided by our framework and confirm the validity
of considering both paradigms.

2 RELATEDWORK

Previous methods of code generation fall into two categories: using
LMBP or GSBP. LPN [16] regarded code generation as a conditional
text generation task and introduced the Seq2Seqmodel, using LMBP.
Later, many methods optimize this generation method. For example,
Wei et al. [29] uses dual learning to jointly train code generation and
representation tasks. Korbak et al. [15] and Wang et al. [27] regard
compilability as one of the training objectives of the Seq2Seq model.
The most advanced Seq2Seq models are primarily based on Trans-
former, such as pre-trained models CodeT5 [28] and UniXcoder
[8].

On the other hand, some works generate code according to gram-
matical structures, using GSBP. Dong et al. [5] generate hierarchical
trees, ensuring the correctness of parenthesis pairs. Yin17 [32] intro-
duced Abstract Syntax Description Language (ASDL) grammar and
proposed the Seq2Tree model to generate an AST with a series of
tree-construction actions. TRANX [33] improve the model structure
and become a widely used Seq2Tree model, with various enhance-
ments proposed to improve its effectiveness. For example, Xu et
al. [31] and Norouzi et al. [18] introduce external knowledge to
enhance the model, ML-TRANX [30] use mutual learning between
different traversal sequences in tree construction, Yin and Neubig
[34] explores the reordering of candidate results. Among them,
ML-TRANX [30] and TRANX-RL [13] are representative works of
exploring the model generation method.

Unlike the above models, which only use a single paradigm,
we explore the mutual learning between two different paradigms
used by the Seq2Seq and Seq2Tree models to enhance both simul-
taneously. Zhang et al. [35] proposed the mutual learning method
for image classification tasks. Due to the universality of mutual
learning, it has been widely used in object detection [11], speech
translation [36], text generation [4], and other fields. ML-TRANX
[30] introduce mutual learning into GSBP Code generation. Their
purpose is to enable knowledge interaction between different AST
generations orders to broaden the context view of models using
GSBP. We differ from this work in multiple ways: (1) We aim to
consider both GSBP and LMBP in code generation and further ex-
tend the mutual learning method between these two paradigms.
(2) Our mutual learning framework has two different generation
objectives, code text, and AST, representing different program repre-
sentations. (3) We implement the alignment between these different
representations to calculate the mutual learning loss.
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3 MUTUALTS

This section describes the full details of our MutualTS framework,
including model details, alignment methods, and the mutual learn-
ing training process.

3.1 Seq2Seq and Seq2Tree in MutualTS

The mutual learning framework we design is model-free and can be
applied to any two models using LMBP and GSBP. To ensure that
the performance gap between the two models is not large, we use
Seq2Seq and Seq2Tree models of similar sizes and with consistent
training data. This is because if one model significantly outperforms
the other, it becomes difficult for the better model to learn from the
worse one. For instance, if the Seq2Seq end is a large pre-trained
model and the Seq2Tree end is a small model, the performance
gap between the two ends makes it hard for the Seq2Seq end to
benefit from the knowledge of the Seq2Tree end, even if there is a
code fragment that is more suitable to generate using GSBP. Given
that the core of our discussion is whether models can benefit from
combining LMBP and GSBP, the two ends should be defined to have
similar sizes and consistent training data to exclude these factors as
much as possible. Unfortunately, although there has been a variety
of large pre-training models based on LMBP and achieved good
results [2, 8, 28], large pre-training models based on GSBP need
to be improved. Some pre-training models use syntax-structure
information such as AST [8, 24], but they still generate code only
using LMBP when training. Therefore, we do not use pre-trained
models, even though the performance of these models is higher.

We choose Transformer [25] for the Seq2Seq end and TRANX
[33] for the Seq2Tree end as base models, both of which are typical
models of LMBP and GSBP, respectively, and have been widely
studied and used. We change the TRANX model to a Transformer
architecture to balance the capabilities of the twomodels. In this sec-
tion, we first present the model details of Transformer and TRANX,
and then present our mutual learning framework.

Transformer [25] framework is widely used in various sequence
generation tasks due to its outstanding performance. The canonical
Transformer has an encoder-decoder structure where both encoder
and decoder consist of stacked layers. The core component of a
layer is the multi-head self-attention mechanism. Given an input
feature sequence 𝑿 = [𝑥1, ..., 𝑥𝑛] ∈ R𝑛×𝑑𝑥 , each attention head
computes a sequence of new features 𝑯 = [ℎ1, ..., ℎ𝑛] ∈ R𝑛×𝑑ℎ as:

𝑯 = softmax

(
𝑸𝑲⊤√︁
𝑑𝑘

)
𝑽 , (1)

𝑸 = 𝑿𝑊𝑄 ,𝑲 = 𝑿𝑊𝐾 , 𝑽 = 𝑿𝑊𝑉 , (2)

Where𝑊𝑄 ∈ R𝑑𝑥×𝑑𝑘 ,𝑊𝐾 ∈ R𝑑𝑥×𝑑𝑘 ,𝑊𝑉 ∈ R𝑑𝑥×𝑑ℎ are learn-
able parameter matrices. The attention mechanism calculates the
similarity between query matrix 𝑄 ∈ R𝑛×𝑑𝑘 and key matrix 𝐾 ∈
R𝑛×𝑑𝑘 to get the attention weight between different positions and
then aggregates the feature sequence according to the attention
weight and the value matrix 𝑉 ∈ R𝑛×𝑑ℎ . The attention mechanism
gives Transformer the ability to capture potential relationships.

TRANX [33] framework takes NL input and outputs a series of
actions based on ASDL grammar. The AST can be constructed using
these actions and predefined traversal order, and then converted

into source code. There are three types of ASDL grammar-based
actions used in TRANX:

ApplyRule[c] actions apply a grammar rule constructor c
to an opening composite frontier field, which has the same type
as c. ApplyRule[c] extends this field to generate an AST node and
frontier fields.

Reduce actions mark the completion of the generation of
child values for a field with optional(?) or multiple(★) cardinalities.

GenToken[v] actions populate a primitive frontier field with
a code token v.

As shown in Figure 2, for the target code in (a), TRANX uses the
action sequence composed of ApplyRule, Reduce, and GenToken
to gradually build the ASDL AST as shown in (b). The sequence of
actions and corresponding opening fields are listed in (c). When a
new non-terminal node is generated, new frontier fields 𝑓𝑖 are also
extended.

TRANX has an encoder-decoder structure to predict actions
based on the programming language’s ASDL rules and token vo-
cabulary. TRANX uses a BiLSTM encoder to learn the word-level
hidden state of an NL input 𝑥 and an LSTM decoder to update the
hidden state at each time step:

h𝑡 = 𝑓LSTM ( [E(𝑎𝑡−1) : s𝑡−1 : p𝑡 ],h𝑡−1), (3)

where E(𝑎𝑡−1) is the embedding of the previous action, s𝑡−1 is the
previous decoder hidden state, and p𝑡 indicates the information
about the parent node. [:] denotes vector concatenation. Further-
more, the attention vector s𝑡 is defined as

s𝑡 = tanh(W𝑠 [c𝑡 : h𝑡 ]), (4)

where c𝑡 is the weighted sum of input encoding by attention
andW𝑠 is a parameter matrix. Then the TRANX decoder calculates
the probability of actions:

𝑝 (𝑎𝑡 = ApplyRule[𝑐] |𝑎<𝑡 , x)

= softmax(E(𝑐)𝑇Ws𝑡 ), (5)
𝑝 (𝑎𝑡 = Reduce|𝑎<𝑡 , x)

= softmax(E(Reduce)𝑇Ws𝑡 ), (6)
𝑝 (𝑎𝑡 = GenToken[𝑣] |𝑎<𝑡 , x)

= 𝑝 (Gen|𝑎<𝑡 , x)𝑝 (𝑣 |Gen, 𝑎<𝑡 , x)
+ (1 − 𝑝 (Gen|𝑎<𝑡 , x))𝑝 (𝑣 |Copy, 𝑎<𝑡 , x), (7)

whereW is a parameter matrix used in generating ApplyRule
action and Reduce action. There are three softmax functions based
on s to calculate the probability ofGenToken action. 𝑝 (Gen|𝑎<𝑡 , x)
for choosing the generation operation, 𝑝 (𝑣 |Gen, 𝑎<𝑡 , 𝑥) for gener-
ating 𝑣 , and 𝑝 (𝑣 = 𝑥𝑖 |Copy, 𝑎<𝑡 , x) for selecting to copy 𝑥𝑖 , respec-
tively.

TRANX determines the set of syntactically allowed actions at
each step of the prediction and selects from them based on the prob-
ability distribution. In this paper, the TranX model is changed from
LSTM architecture to Transformer architecture (called TRANX-
Trans) to share the encoder and achieve a relatively consistent
effect with the Seq2Seq end. At time step 𝑡 , the decoder of Tranx-
trans accepts the sequence stacked by the historical information
[E(𝑎𝑖 ) : s𝑖 : p𝑖+1], 𝑖 ∈ [0, 𝑡 − 1] as input and outputs the hidden
vector h𝑡 for subsequent computation.
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Figure 2: Example of code generation procedure in TRANX. (a) The code snippet. (b) The corresponding ASDL AST for the code,

𝑓𝑖 indicates field names. (c) The action sequence that TranX used to construct the AST, ApplyRule actions are represented by

their constructors.

MutualTS The MutualTS framework combining Transformer
and TRANX-Trans is shown in Figure 3, which contains a shared
Transformer encoder and two Transformer decoders using different
paradigms. The encoder is utilized to acquire semantic represen-
tations of the NL input, while the Seq2Seq end decoder is used to
generate a sequence of code tokens and the Seq2Tree end decoder
is used to generate a sequence of tree-construction actions. The two
decoders use the same paradigms as the Seq2Seq models and the
Seq2Tree models, respectively. By combining these two paradigms,
the MutualTS framework can be enhanced in two ways. First, the
two decoders achieve bidirectional information transfer through
mutual learning, which helps each decoder obtain knowledge from
the other. In addition, the shared encoder can receive feedback from
both decoders simultaneously, which will enhance its encoding abil-
ity, enabling the encoder to consider the two different modes of
code.

3.2 Align generation steps and probability

spaces

In order to realize the mutual learning between the Seq2Seq and
Seq2Tree methods, we first need to establish the relationship be-
tween the generation steps of the two decoders. The Seq2Seq de-
coder generates one token per step in the code snippet, while the
Seq2Tree decoder generates one action, i.e., one AST node, per step
to build the AST. Therefore, we have to find a mapping between
tokens in the code snippet and nodes in the AST.

We implement a tool to add the corresponding AST node informa-
tion when converting the AST into a list of code tokens for Python

Figure 3: The mutual learning framework for the Seq2Seq

and Seq2Tree models with a shared encoder.

(see Figure 4(a)). It is implemented based on astor1, a Python li-
brary for round-trip an AST back to source code. For the input AST,
the tool traverses the nodes, generates the corresponding token,
and puts the token in the output list along with the current node
number. The result is a list of code tokens and corresponding node
numbers (see Figure 4(b)).

1https://pypi.org/project/astor/
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Figure 4: Process for creating mutual learning pairs for the

example in Figure 1. (a) Pair code tokens with the correspond-

ing AST nodes, noting that some AST nodes are omitted. (b)

Determine whether a pair is used for mutual learning.

In addition, mutual learning requires calculating the difference
between the probability distributions of two decoders, which means
the output probability spaces of two decoders need to be the same.
However, the output probability space of the Seq2Tree decoder is
consistentwith the Seq2Seq decoder onlywhen predictingGenToken
actions. As shown in Figure 4(b), when the elements of pairs of (‘a’,
GenToken[a]), (‘sum’,GenToken[sum]), (‘axis’,GenToken[axis]),
and (‘1’, GenToken[1]) are generated, the output probability spaces
of the two decoders are consistent, and both are the code token
vocabulary. However, when ApplyRule or Reduce actions are gen-
erated, the output probability space of the Seq2Tree decoder is the
grammar rule table, and these actions may correspond to multiple
tokens. For these actions, we try to correspond them to a unique
synonym token that must appear in the (token, action) pairs cor-
responding to the action. Pairs that satisfy these conditions are
also used for mutual learning. For example, 𝑛4 in Figure 4 has the
corresponding token ‘.’, and this token only corresponds to Ap-
plyRule[Attribute]. This allows us to establish the probability
space mapping (‘.’, ApplyRule[Attribute]), indicating that the
two have similar semantics. Other mappings include (‘for’, Ap-
plyRule[For]), (‘def’, ApplyRule[FunctionDef]), etc. As shown
in Table 6, these nodes correspond to a code pattern, respectively,
and the semantics of the nodes are basically the same as the corre-
sponding tokens. Some actions do not have unique synonymous
tokens, such as 𝑛3 in Figure 4, whose corresponding action is Ap-
plyRule[Call], and whose corresponding tokens are ‘(’ and ‘)’,
which come in pairs and are widely used in code. The (token, node)
pair corresponding to these actions will not be used for mutual

learning. Therefore, we establish a one-to-one correspondence be-
tween a subset of the grammar rule list and a subset of the code
token vocabulary. Please refer to Table 6 in Appendix for details.

Algorithm 1 The training procedure of MutualTS
Require: Training set 𝐷 . Hyperparameters 𝜆𝑔 and 𝜆𝑟
Ensure: The encoder parameters 𝜃𝑒 , the Seq2Tree decoder param-

eters 𝜃𝑡 and the Seq2Seq decoder parameters 𝜃𝑠 .
Initial parameters 𝜃𝑒 , 𝜃𝑡 and 𝜃𝑠 .
repeat

for each batch 𝐵 ∈ 𝐷 do

L(𝐵;𝜃𝑒 , 𝜃𝑡 ) = 0
L(𝐵;𝜃𝑒 , 𝜃𝑠 ) = 0
for each instance (𝒙, 𝒂, 𝒄,𝝈) ∈ 𝐵 do

Extract 𝝈𝒈 and 𝝈𝒓 from 𝝈

L(𝐵;𝜃𝑒 , 𝜃𝑠 ) += LMLE (𝒙, 𝒄 ;𝜃𝑒 , 𝜃𝑠 )
+ 𝜆𝑔 · LKL

𝑔 (𝒙, 𝒄,𝝈𝒈 ;𝜃𝑒 , 𝜃𝑠 |𝒂;𝜃𝑡 )
+ 𝜆𝑟 · LKL

𝑟 (𝒙, 𝒄,𝝈𝒓 ;𝜃𝑒 , 𝜃𝑠 |𝒂;𝜃𝑡 )
L(𝐵;𝜃𝑒 , 𝜃𝑡 ) += LMLE (𝒙, 𝒂;𝜃𝑒 , 𝜃𝑡 )

+ 𝜆𝑔 · LKL
𝑔 (𝒙, 𝒂,𝝈𝒈 ;𝜃𝑒 , 𝜃𝑡 |𝒄 ;𝜃𝑠 )

+ 𝜆𝑟 · LKL
𝑟 (𝒙, 𝒂,𝝈𝒓 ;𝜃𝑒 , 𝜃𝑡 |𝒄 ;𝜃𝑠 )

end for

Update 𝜃𝑒 , 𝜃𝑠 to minimize L(𝐵;𝜃𝑒 , 𝜃𝑠 )
Update 𝜃𝑒 , 𝜃𝑡 to minimize L(𝐵;𝜃𝑒 , 𝜃𝑡 )

end for

until convergence

3.3 Mutual learning between Seq2Seq and

Seq2Tree

After determining (token, action) pairs, probability space correspon-
dence, and the details of MutualTS, this subsection describes the
training method of mutual learning. In order for each decoder to
learn from the other decoder, MutualTS performs bidirectional
knowledge transfer at specific training steps that correspond to the
generation of (node, token) pairs. Specifically,MutualTS is trained
through Kullback-Leibler (KL) divergence loss between the outputs
of the Seq2Seq and Seq2Tree ends at corresponding (token, action)
pairs. This training occurs concurrently with the use of maximum
likelihood estimation (MLE) loss between decoder output and tar-
get code token or AST action sequence. Through the interaction of
these loss functions, the encoder of MutualTS tends to learn to
extract better intermediate feature representations that meet both
code text generation and AST generation, while the two decoders
can learn knowledge of different generation paradigms from each
other.

The specific training procedure of MutualTS is shown in Al-
gorithm 1, where 𝜃𝑒 , 𝜃𝑠 , and 𝜃𝑡 represent the parameter sets of
the NL encoder, the Seq2Seq decoder, and the Seq2Tree decoder,
respectively. (𝒙, 𝒂, 𝒄,𝝈) represents an instance in the dataset, 𝒙 is
NL description input, 𝒂 is target action sequence, 𝒄 is target code
sequence corresponding to 𝒂, and 𝝈 is the (token, action) pairs
between 𝒄 and 𝒂. L represents the sum of the losses of the corre-
sponding end in an epoch, where 𝜆𝑔 and 𝜆𝑟 are coefficients that
are used to control the impact of different losses. For each training

242



Internetware 2023, August 04–06, 2023, Hangzhou, China Trovato et al.

instance, we first extracted two subsets of 𝝈 , namely 𝝈𝒈 and 𝝈𝒓 .
The set 𝝈𝒈 ⊆ 𝝈 includes all pairs containing the GenToken action,
while 𝝈𝒓 ⊆ 𝝈 includes pairs containing the ApplyRule action and
are included in the (token, action) comparison table. Then, three
loss functions for each decoder are obtained.

For the Seq2Seq end, theMLE lossLMLE (𝒙, 𝒄 ;𝜃𝑒 , 𝜃𝑠 ) is calculated
by target action sequence 𝒂 as follows:

LMLE = −
𝑇∑︁
𝑖=1

log 𝑝 (𝑐𝑖 |𝑐<𝑖 , 𝒙, 𝜃𝑠 ), (8)

The twoKL lossLKL
𝑔 (𝒙, 𝒄,𝝈𝒈 ;𝜃𝑒 , 𝜃𝑠 |𝒂;𝜃𝑡 ) andLKL

𝑟 (𝒙, 𝒄,𝝈𝒓 ;𝜃𝑒 , 𝜃𝑠 |𝒂;𝜃𝑡 )
of Seq2Tree end are calculated as follows:

LKL
𝑔 =

∑︁
(𝑖, 𝑗 ) ∈𝜎𝑔

KL1 (𝑝𝑎 ( 𝑗)∥𝑝𝑐 (𝑖)), (9)

LKL
𝑟 =

∑︁
(𝑖, 𝑗 ) ∈𝜎𝑟

KL2 (𝑓𝑎 ↦→𝑐 (𝑝𝑎 ( 𝑗))∥𝑝𝑐 (𝑖)), (10)

where (𝑖, 𝑗) denotes the generation step of a (token, action) pair,
respectively. 𝑝𝑐 (𝑖) = 𝑝 (·|𝑐<𝑖 , 𝒙 ;𝜃𝑠 ) represents the probability distri-
bution of Seq2Seq model at step 𝑖 , 𝑝𝑎 ( 𝑗) = 𝑝 (·|𝑎< 𝑗 , 𝒙 ;𝜃𝑡 ) represents
the probability distribution of Seq2Tree model at step 𝑗 . KL1 (·∥·)
and KL2 (·∥·) are KL divergence, the probability space of the former
is the total code token vocabulary, and the latter’s is code tokens
in the (token, action) comparison table. Correspondingly, 𝑓𝑎 ↦→𝑐 is
used to convert the probability distribution on the grammar rule
table to that on the code token vocabulary, based on the (token,
action) comparison table. Similarly, for the Seq2Tree end, we have

LMLE = −
𝑇∑︁
𝑗=1

log𝑝 (𝑎 𝑗 |𝑎< 𝑗 , 𝒙, 𝜃𝑡 ), (11)

LKL
𝑔 =

∑︁
(𝑖, 𝑗 ) ∈𝜎𝑔

KL1 (𝑝𝑐 (𝑖)∥𝑝𝑎 ( 𝑗)), (12)

LKL
𝑟 =

∑︁
(𝑖, 𝑗 ) ∈𝜎𝑟

KL2 (𝑝𝑐 (𝑖)∥ 𝑓𝑎 ↦→𝑐 (𝑝𝑎 ( 𝑗))), (13)

The training steps are repeated until both the Seq2Seq and
Seq2Tree end converge. After training, we combine the Seq2Seq
end or the Seq2Tree end with the encoder to form an independent
model for prediction.

4 EXPERIMENT SETUP

4.1 Datasets

To demonstrate the general validity of our method, we carry out
experiments on three datasets. In addition to the benchmark dataset
CoNaLa, we also constructed two datasets, named JuICe_10k and
JuICe_tiny, based on the JuICe dataset [1].

CoNaLa[33]. This dataset consists of 2,879 examples of manu-
ally annotated NL questions and their Python solutions on Stack-
Overflow. The examples in CoNaLa cover real-world NL queries
issued by programmers with different intentions, with broad cover-
age and high composability.

JuICe_10k. The validation and test sets of this dataset are con-
sistent with the JuICe dataset, and the train set contains 10,000

random samples from the JuICe train set. JuICe [1] is an open-
domain large-scale dataset of over 659K publicly available Jupyter
notebooks from Github, together with a manually curated evalua-
tion set based on nbgrader [9]. Due to the high demand for the JuICe
dataset on model size and training resources, we do not use the full
JuICe dataset but divide a subset to reduce complexity. This dataset,
like the JuICe dataset, is more challenging because of the exten-
sive coverage nature of the training set and the domain differences
between the training set and evaluation set.

JuICe_tiny. This dataset is a repartition of the JuICe dataset’s
validation set and test set, which are manually collected in-class pro-
gramming assignment notebooks with solutions. This dataset is of
higher quality than the noisy and large train set of the JuICe dataset.
Besides, the training and evaluation set of JuICe_tiny belong to the
same domain. These characteristics make models perform better
on JuICe_tiny dataset than on the JuICe_10k dataset.

Table 1: Statistics of datasets

Dataset CoNaLa JuICe_tiny JuICe_10k

Train Num 2,175 3,346 10,000
Dev Num 200 300 1,831
Test Num 500 300 2,115

Avg NL Tokens 10.2 58.0 40.4
Avg Code Tokens 14.9 38.4 43.4
Avg AST Nodes 23.2 55.2 58.8

𝝈𝒈 (%) 29.2 30.2 32.7
𝝈𝒓 (%) 6.4 7.0 6.6
Reduce(%) 23.7 23.4 20.9

The statistics of the three datasets are shown in Table 1. The
values of 𝝈𝒈 and 𝝈𝒓 represent the average proportions of GenTo-
ken actions and ApplyRule actions contained in pairs for mutual
learning in generating AST, respectively. The statistical values of
Reduce represent the average proportions of Reduce actions in
generating AST, which do not correspond to AST nodes. Ourmutual
learning framework can cover about 50% of AST nodes.

4.2 Baselines

The mutual learning framework we proposed can combine different
Seq2Seq models and Seq2Tree models. In addition to the traditional
TRANX model, we use the following models related to the models
used in MutualTS as baselines.

TRANX-RL [13]. This method equips the TRANX model with
a context-based branch selector. The selector is optimized by rein-
forcement learning to determine the optimal branching order of
multi-branching nodes dynamically.

ML-TRANX [30]. This method uses mutual learning for dif-
ferent traversals-based decodings (depth-first preorder traversal
vs. breadth-first traversal) of the TRANX model to improve the
effect. ML-TRANX acts on AST, which is different from MutualTS
integrating the two generation paradigms GSBP and LMBP. In addi-
tion, ML-Tranx calculates the KL loss at all AST generation actions
without considering the alignment between AST and code.
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Model CoNaLa JuICe-tiny JuICe-10k
CodeBLEU BLEU EM CodeBLEU BLEU EM BLEU

TRANX [33] 26.80±0.61 †24.35±0.4 †2.5±0.7 18.06±0.46 12.36±0.5 1.2±0.2 4.63±0.2
TRANX-RL [13] 25.14±0.96 †25.47±0.7 †2.6±0.4 19.79±0.79 13.85±0.3 1.0±0.2 6.08±0.3
ML-TRANX [30] 27.59±0.98 24.42±0.8 2.2±0.4 18.41±0.51 12.49±0.6 1.2±0.3 4.75±0.4
Transformer [25] 26.71±0.94 25.88±0.5 1.2±0.3 24.80±0.38 19.36±0.2 1.2±0.2 5.84±0.1
TRANX-Trans 27.31±0.37 26.50±0.4 1.8±0.2 22.62±0.69 16.89±0.6 2.1±0.2 4.80±0.3
MutualTS(Seq2Seq) 27.19±0.50 27.55±0.2 0.7±0.3 25.20±0.76 19.59±0.1 1.3±0.0 6.56±0.1
MutualTS(Seq2Tree) 28.33±0.71 28.08±0.8 2.5±0.2 25.01±0.92 19.52±0.0 2.2±0.3 6.64±0.1

Table 2: Mean and standard deviation results of ourmodel and baselines. All results were obtained from at least five experiments.

† indicates the scores are previously reported ones.

TRANX-Trans. TRANX model implemented with Transformer
structure, which generates a sequence of actions consistent with
the TRANX model. The structure of the model is equivalent to
removing the Seq2Seq decoder from the MutualTS framework,
and the parameter settings are consistent withMutualTS.

Transformer [25]. A Seq2Seq model generating code token se-
quence. This model is equivalent to removing the Seq2Tree decoder
from the MutualTS framework, and the parameter settings are
consistent with MutualTS. Both the TRANX-Trans model and the
Transformer model are used to explore the effectiveness of mutual
learning methods.

4.3 Evaluation Metrics

Following the previous studies [8, 13, 28], we used three evaluation
metrics including CodeBLEU, BLEU, and EM. CodeBLEU [21] is
designed to evaluate code considering syntax and semantics. BLEU
evaluates text based on n-gram similarity. We use a smooth BLEU-4
score similar to previous studies [13, 34]. EM means the proportion
of exactly matched results.

4.4 Hyperparameters

We set the Transformer encoder and decoder parameters in our
model as follows: (1) the number of layers 𝐿 = 6. (2) the number of
heads 𝐻 = 4. (3) the feed-forward dimension 𝐷𝐹𝐹 = 1024. (4) the
embedded dimension of actions and code tokens𝐷𝑎𝑐𝑡𝑖𝑜𝑛 = 𝐷𝑐𝑜𝑑𝑒 =

256. (5) the embedded dimension of composite frontier field and
field type 𝐷 𝑓 𝑖𝑒𝑙𝑑 = 𝐷𝑡𝑦𝑝𝑒 = 64. The weight coefficients 𝜆𝑔 and 𝜆𝑟
of loss functions are both set to 1. For decoding, the beam sizes for
CoNaLa, JuICe_tiny, JuICe_10k are 15, 5, and 5, respectively. We add
the pointer network [26] to the decoder as same as our baselines.
In our experiment, we use one Tesla V100 GPU for training.

5 RESULTS

In this section, we evaluate theMutualTS framework in order to
answer the following research questions:

• RQ1: How effective is the MutualTS framework in code
generation task?

• RQ2: How effective are the different components in the Mu-
tualTS framework?

• RQ3: How effective is mutual learning between two different
generation paradigms compared with the mutual learning
within one paradigm?

RQ1: CompareMutualTS framework with

baselines

The comparison results are shown in Table 2, including the mean
and standard deviation.MutualTS(Seq2Seq) andMutualTS(Seq2Tree)
represent the Seq2Seq and Seq2Tree ends of our framework. As
seen, MutualTS exceeds all baselines in almost all metrics. The
only exception was the exact match (EM) metrics on the CoNaLa
dataset, in which the Seq2Tree end of MutualTS has a result 0.1
percent lower than TRANX-RL but better than most other baselines.

Comparing MutualTS with Transformer and TRANX-Trans
shows that the mutual learning approach effectively combines the
two models and improves their performance. Interestingly, the
EM metrics on the seq2seq end are weaker than on the seq2tree
end. This may be due to subtle differences between the code se-
quence transformed by AST and the original code, for example,
the use of parentheses, even though they have the same function.
Conversely, the training AST samples of the Seq2Tree end are con-
sistent with the original data, and it achieves better effects on EM
metrics through learning training data and mutual learning.

In addition, the CodeBLEU and BLEU metrics of the Seq2Tree
and Seq2Seq ends were improved synchronously. Moreover, the
comparison between the two ends is consistent with the compar-
ison between the standalone Seq2Seq model (Transformer) and
Seq2Tree model (TRANX-Trans). For example, in the JuICe-tiny
dataset, the CodeBLEU metric of TRANX-Trans is lower than that
of Transformer. Through mutual learning, the CodeBLEU metric of
Seq2Tree and Seq2Seq ends reach a consistent level and are higher
than models using a single paradigm. Moreover, the Seq2Seq end
performs better than the Seq2Tree end. It shows that the mutual
learning framework effectively combines the two paradigms with
different output data forms, and can improve the model generation
effect.
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Table 3: Ablation study on mutual learning components.

JointTS: Only share encoder. MutualTS𝑔: Mutual learning

on (GenToken, token) pairs.MutualTS𝑟 : Mutual learning

on (ApplyRule, token) pairs.

Model CoNaLa JuICe-tiny
BLEU BLEU

JointTS(Seq2Seq) 25.99±0.7 19.29±0.1
JointTS(Seq2Tree) 27.41±0.5 19.23±0.3
MutualTS𝑔(Seq2Seq) 26.57±0.1 20.30±0.7
MutualTS𝑔(Seq2Tree) 27.78±0.4 20.29±0.2
MutualTS𝑟 (Seq2Seq) 26.88±0.5 19.44±0.4
MutualTS𝑟 (Seq2Tree) 27.84±0.5 19.54±0.7
MutualTS(Seq2Seq) 27.55±0.2 19.59±0.1
MutualTS(Seq2Tree) 28.08±0.8 19.52±0.0

Table 4: Ablation study on different paradigms.MutualTT:

Mutual learning between two Seq2Tree models.MutualSS:

Mutual learning between two Seq2Seq models.

Model CoNaLa JuICe-tiny
BLEU BLEU

MutualSS 27.07±0.2 19.51±0.4
MutualTT 26.88±0.6 16.60±0.4
MutualTS(Seq2Seq) 27.55±0.2 19.59±0.1
MutualTS(Seq2Tree) 28.08±0.8 19.52±0.0

RQ2: Effects of different mutual learning

components

As described in section 3, MutualTS has two loss functions based
onmutual learning,LKL

𝑔 andLKL
𝑟 , corresponding toGenToken and

ApplyRule actions generated by the Seq2Tree end. We designed
three variants of MutualTS to explore the role of these components.
The JointTS model removes LKL

𝑔 and LKL
𝑟 and still share encoder.

The MutualTS𝑔 model uses LKL
𝑔 only. The MutualTS𝑟 model

uses LKL
𝑟 only. The remaining settings of these three variants are

consistent with the original model.
The ablation results of mutual learning loss functions are shown

in Table 3. The additional content after the model name indicates
whether the result is output by the Seq2Seq or Seq2Tree end of
the model. The results show that the two kinds of mutual learning
components can improve the effect independently, but their effects
are not orthogonal. Compared with JointTS(Seq2Tree), the BLEU
metrics of theMutualTS(Seq2Tree) improve by 0.67, which is lower
than the sum of effect improvements ofMutualTS𝑔(Seq2Tree) and
MutualTS𝑟 (Seq2Tree). In addition, the JointTS model shows an
improvement over the separately trained models, indicating that
a degree of knowledge fusion can be achieved through the shared
encoder.

RQ3: Effects of interacting two different

paradigms of code generation

To verify the interaction effect of two different paradigms (GSBP &
LMBP), we designed two variants of MutualTS that apply mutual
learning between models using a single paradigm. The Mutu-

alTT model combines two different initialized Seq2Tree models
and shares the encoder. TheMutualSSmodel combines two differ-
ent initialized Seq2Seq models and shares the encoder. The hyper-
parameter settings of these models are consistent with MutualTS.

The ablation results are shown in Table 4. On the two datasets,
mutual learning between two identical models with different initial-
ization also helps to improve the generalization, and theMuTualTS
model performs better than these models. The results show that
the Seq2Seq end and the Seq2Tree end learn different features, and
they can benefit from each other. Moreover, code generation can
be improved by using both language model-based and grammatical
structure-based paradigms.

6 DISCUSSION

6.1 Qualitative Analysis

In this section, we aim to analyze the specific ways in which mutual
learning enhances the performance of models. To perform a thor-
ough evaluation, we use a token-level code completion task rather
than the code generation task used in previous experiments. Code
completion tasks are widely used to measure the generation capa-
bility of a model on a single token or short code snippet [8, 14, 17].
In our experiments, the model is asked to predict the next token or
action given all previous tokens or actions and the NL description.
This allows us to make token-level comparisons and accurately
assess the ability of different models to predict specific tokens. All
experiments in this section are conducted using the test set of the
CoNaLa dataset.

Table 5: Results of averageMLE loss on code completion tasks

for different models

Model CoNaLa
loss

Transformer 2.33
MutualTS(Seq2Seq) 1.82

TRANX-Trans 2.88
MutualTS(Seq2Tree) 2.32

The evaluation of generation performance is based on the proba-
bility of correct token predictions. Specifically, we calculate theMLE
loss at specific token positions, which is negatively correlated with
the correct probability. In the rest of this section, “loss” refers specif-
ically to the MLE loss. As described in Section 3.3, let the parameter
sets of a model be 𝜃 , the input be 𝑥 and the current output step be
𝑡 . That is, 𝑦<𝑡 represents the previous sequence and 𝑦𝑡 represents
the current target. The relationship between the current step loss
𝑙𝑡 and the correct probability 𝑝 (𝑦𝑡 |𝑦<𝑡 , 𝑥) is 𝑙𝑡 = − log𝑝 (𝑦𝑡 |𝑦<𝑡 , 𝑥).
Table 5 shows the average loss of different models. The results
show that models trained using ourMuTualTS framework have
a higher probability of correctly predicting the next token, which
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(a) The NL description

(b) Transformer (c) MutualTS(Seq2Seq)

(d) TRANX-Trans (e) MutualTS(Seq2Tree)

(f) color-loss

Figure 5: Results of example 1. (a) The input NL description.

(b)-(e) The loss of different models on code tokens or AST

nodes. The background red color of a token/node is propor-

tional to the loss when predicting it. (f) The correspondence

between color and loss.

is consistent with the experimental results reported earlier in this
paper.

Through detailed analysis, we have found that mutual learning
improves the probability of correct predictions in a general way,
but it is particularly effective in some cases. When models using
different paradigms have different generation orders, they may
have very different performance on specific code tokens. In these
cases, mutual learning can integrate the knowledge of both models
and significantly improve performance. Here are some examples to
illustrate this.

The visualization results of example 1 are shown in Figure 5.
The deeper the red background in a token/node, the greater the
loss, that is, the lower the correct probability of the model predic-
tion at this token/node. By comparing the loss difference between
different models at the same position, we can analyze the specific
ways in which mutual learning improves model performance. For
Transformer using LMBP, the loss of the token ‘sys’ is much higher
than that of TRANX-Trans when predicting the sys node (the sys
node is corresponding to the token ‘sys’), and is reduced from
18.17 to 11.76 through mutual learning. On the other hand, when
predicting the second Attribute node and the subsequent Name
node, TRANX-Trans has higher losses than that of Transformer
when predicting the corresponding first ‘.’ token, and these losses
are reduced significantly through mutual learning. Some people
may argue that models without mutual learning are attempting
to generate correct code that is different from the target code, so
mutual learning has not really been effective. However, we disagree
with this perspective. The training data for the models is completely
the same, so if a model without mutual learning wants to generate
a correct but different code, it should still try to generate the same
code after mutual learning. Whether mutual learning is used should

(a) The NL description

(b) Transformer (c) MutualTS(Seq2Seq)

(d) TRANX-Trans (e) MutualTS(Seq2Tree)

(f) color-loss

Figure 6: Results of example 2.

(a) The NL description

(b) Transformer

(c) MutualTS(Seq2Seq)

(d) color-loss

Figure 7: Results of example 3.

not affect the losses at these tokens. In practice, however, mutual
learning greatly reduces the losses at these tokens.

We believe that one of the reasons is that it is harder for a de-
coder to model underlying semantic dependency from back to front,
compared to that from front to back. Here we say a code fragment
𝑐1 semantically depends on another code fragment 𝑐2, if the model
needs some information from the code fragment 𝑐2 when generating
the code fragment 𝑐1. As a result, models with different genera-
tion orders have different performances on learning dependencies,
leading to differences in their predictions on specific tokens. As
shown in example 1, the Attribute and Name nodes are not di-
rectly related to the input, but rather semantically depend on the
function name ‘write’ and package prefixes ‘sys’ and ‘stdout’.
However, those nodes are generated later, and when training the
Seq2Tree model on nodes like Attribute and Name, those related
nodes are not visible to the model yet. On the other hand, when
generating the first ‘.’ token, a Seq2Seq model can see ‘sys’, so this
dependency is easy to learn for the Seq2Seq model. Through the
knowledge interaction of mutual learning, the Seq2Tree model can
also better model this dependency, causing the loss to decrease.

Similarly, the ‘sys’ token is a second-level package prefix for the
‘write’ function, and is related to the subsequent “.stdout.write()”
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fragment. However, the Seq2Seq model needs to generate ‘sys’ to-
ken first, making it difficult to model this underlying dependency.
On the other hand, when generating the ‘sys’ node, the Seq2Tree
model can see ancestor nodes Call and two Attribute, and this in-
formation can be transferred to the Seq2Seq model through mutual
learning, improving its performance at ‘sys’ token.

Other examples include example 2 in Figure 6 and example 3 in
Figure 7. Through mutual learning, high losses have been signifi-
cantly reduced. At these positions, underlying semantic dependen-
cies are from back to front in one paradigm, but they are from front
to back in another. TheMutualTS framework improves the correct
probability of models at these positions, demonstrating that one
of the advantages of combining different paradigms is to help the
model more comprehensively learn underlying dependencies. Fur-
thermore, this also inspires us to design methods that enhance the
ability of code generation models to learn underlying dependencies
from back to front better.

6.2 Threats to Validity

There are two main threats to the validity of ourMutualTS frame-
work. Firstly, we conduct experiments on three Python datasets.
Our findings suggest that mutual learning between models using
different paradigms can enhance performance and is particularly
effective in some situations. But further research is needed to de-
termine the generalizability of our results to other programming
languages. For other programming languages with open-source
ASDL grammar, it is possible to design the corresponding Seq2Tree
model and align the generation steps of different paradigms, but
with a lot of engineering effort. In futurework, we plan to extend our
study to include a broader range of programming languages. Sec-
ondly, We choose two typical models for mutual learning, neither
of which is a pre-training model. It is exciting to explore whether
our approach would also be effective in pre-training models. How-
ever, the pre-training generation model using GSBM has not been
studied, so we cannot use the pre-training model as the Seq2Tree
end. Additionally, there is a significant performance gap between
pre-training models and other models. Therefore, only using a pre-
training model as the Seq2Seq end would not achieve our purpose,
that is, to analyze whether combining different paradigms can im-
prove the performance of code generation models. In summary, our
results are limited and we plan to conduct further experiments with
pre-training models in the future.

7 CONCLUSION

This paper first argues that code generation should consider both
the language model-based paradigm and grammatical structure-
based paradigm used by Seq2Tree and Seq2Seq models, respectively.
Then this paper proposes a mutual learning framework combining
the Seq2Tree and Seq2Seq models to realize knowledge interac-
tion between them. The results of main experiments and ablation
studies show that combining the two code generation paradigms is
effective.
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A COMPARISON TABLE

Table 6: (token, ApplyRule action) comparison table.

Action Code pattern Token

stmt → FunctionDef(identifier name,
arguments args, stmt* body,
expr* decorator_list, expr? returns)

@[decorator_list]
def [name]([args])->[returns]:

[body]
def

stmt → ClassDef(identifier name,
expr* bases, keyword* keywords,
stmt* body, expr* decorator_list)

@[decorator_list]
class [name]([bases], [keywords]):

[body]
class

stmt → For(expr target, expr iter,
stmt* body, stmt* orelse)

for [target] in [iter]:
[body]

else:
[orelse]

for

stmt →While(expr test, stmt* body,
stmt* orelse)

while [test]:
[body]

else:
[orelse]

while

stmt → If(expr test, stmt* body,
stmt* orelse)

if [test]:
[body]

else:
[orelse]

if

stmt →With(withitem* items, stmt* body) with [items]:
[body] with

stmt → Raise(expr? exc, expr? cause) raise [exc] from [cause] raise

stmt → Try(stmt* body,
excepthandler* handlers,
stmt* orelse, stmt* finalbody)

try:
[body]

[handlers]
else:

[orelse]
finally:

[finalbody]

try

stmt → Return(expr? value) return [value] return

stmt → Delete(expr* targets) del [targets] del

stmt → Assert(expr test, expr? msg) assert [test], [msg] assert

stmt → Import(alias* names) import [names] import

stmt → ImportFrom(identifier? module,
alias* names, int? level) from [module] import [names] from

stmt → Global(identifier* names) global [names] global

stmt → Nonlocal(identifier* names) nonlocal [names] nonlocal

stmt → Pass() pass pass

stmt → Break() break break

stmt → Continue() continue continue

expr→ Await(expr value) await [value] await

expr→ Lambda(arguments args,
expr body) lambda [args]: [body] lambda

expr→ Ellipsis() ... ...

expr→ Attribute(expr value,
identifier attr) [value].[attr] .

boolop→ And() and and

boolop→ Or() or or

operator→ Add() + +

operator→ Sub() - -

operator→Mult() * *

operator→MatMult() @ @

operator→ Div() / /

operator→Mod() % %

operator→ Pow() ** **

operator→ LShift() << <<

operator→ RShift() >> >>

operator→ BitOr() | |

operator→ BitXOr() ∧ ∧
operator→ BitAnd() & &

operator→ FloorDiv() // //

unaryop → Invert() ∼ ∼
unaryop → Not() not not

cmpop→ Eq() == ==

cmpop→ NotEq() != !=

cmpop→ Lt() < <

cmpop→ LtE() <= <=

cmpop→ Gt() > >

cmpop→ GtE() >= >=

cmpop→ Is() is is

cmpop→ In() in in

excepthandler → ExceptHandler(expr? type,
identifier? name, stmt* body)

except [type] as [name]:
[body] except
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